一種基于模糊模板匹配的車牌漢字識別方法
2011-07-07 18:32:27 來源:
關鍵字:
字符識別屬于模式識別的范疇,通常的字符識別方法可分為2類:基于字符結構(筆畫特征)的結構識別和基于字符統(tǒng)計特征的統(tǒng)計識別。結構模式識別方法的優(yōu)點是可以識別復雜的模式,缺點是需要進行筆畫特征的提取,在輸入圖像質(zhì)量不佳的情況下,這一點往往難以做到。在統(tǒng)計模式識別方法中,特征提取方便,識別速度與識別對象無關,但需要得到字符集的穩(wěn)定特征,且在字符筆畫較多時要求的特征量非常大。二種識別方法各有優(yōu)缺點。人類的視覺感知系統(tǒng)是一個魯棒性很強的、能抵御實際中可能遇到的各種變形和噪聲干擾的文字識別系統(tǒng)。人們的認字過程實際上是對漢字整體形象的把握,是對漢字圖像全局的處理過程[1]。因而,漢字的整體信息在無筆順識別中起著無法替代的重要作用。統(tǒng)計模式識別借助概率論的知識,判斷或決策對象的特征類別,使得決策的錯誤率達到最小;诮y(tǒng)計特征的識別方法先抽取識別對象的穩(wěn)定特征,組成特征矢量,然后在字符集的特征空間中進行特征匹配;谝陨险J識,在分析汽車牌照中漢字字符的特點后,采用了有別于結構分析的一種基于字符圖像特征統(tǒng)計的模式識別方法進行漢字識別。同時針對統(tǒng)計方法無法區(qū)分的相似漢字,提取其微結構信息進行特殊的校正識別。1 特征統(tǒng)計匹配統(tǒng)計決策論其要點是提取待識別模式的一組統(tǒng)計特征,然后按照一定準則所確定的決策函數(shù)進行分類判決[2]。漢字的統(tǒng)計模式識別是將字符點陣看作一個整體,從該整體上經(jīng)過大量統(tǒng)計得到所用特征,用盡可能少的特征模式來描述盡可能多的信息。所采用的方法有:特征統(tǒng)計的方法、整體變換分析法[3]、幾何矩特征、筆劃密度特征、字符投影特征、外圍特征、微結構特征和特征點特征等。這些方法都具有各自的優(yōu)缺點,應根據(jù)具體應用進行選取。主要方法有外圍面積特征匹配法和網(wǎng)格特征匹配法。外圍面積特征反映了字符的輪廓信息。外圍面積特征提取法,主要是從周圍形狀的心理學知識來獲得漢字信息的特征,即對文字周圍上下左右的形狀進行量化,從而構造特征向量。網(wǎng)格特征實際是結構模式識別和統(tǒng)計模式識別相結合的產(chǎn)物。字符圖像被均勻或非均勻地劃分為若干區(qū)域,稱之為“網(wǎng)格”。在每個網(wǎng)格內(nèi)尋找各種特征,如目標面積比例、交叉點、筆劃端點的個數(shù)、細化后的筆劃長度和筆劃密度等。特征統(tǒng)計以網(wǎng)格為單位,即使個別點統(tǒng)計有誤差也不會造成大的影響,從而增強了特征的抗干擾性。因此這種方法得到日益廣泛的應用。在實際的車牌漢字識別中,當相同漢字的二值圖形變動較小時該方法較有效。具體應用:將尺寸為34×66象素的漢字二值圖均勻分成32個正方形的小區(qū)域(不考慮外邊框的1個象素),統(tǒng)計每個8×8的小區(qū)域內(nèi)目標象素(白色)所占的面積比例,就得到了歸一化的32維特征矢量。統(tǒng)計多幅相同漢字的32維特征矢量,取均值作為該漢字的標準網(wǎng)格特征模板。識別時,計算待識別漢字的32維網(wǎng)格特征矢量與模板矢量之間的Euclid距離,求得最小距離值,其對應的漢字即為識別結果。在具體應用中,由于外部原因常常會出現(xiàn)字符模糊、字符傾斜的情況,而網(wǎng)格特征匹配方法對字符模糊和傾斜較敏感,因此魯棒性不是很強,不適合實際應用。2 模板匹配考慮到以上2種主要識別方法存在的弊端,決定選用模板匹配的算法進行字符的識別。實際研究中發(fā)現(xiàn),二值化的圖形模板雖然直觀,但其匹配計算過程過于簡單直接,對傾斜、形變、殘損、模糊的待識別字符匹配誤差較大,因此魯棒性較差。而灰度模板由于色彩、光照等因素影響,難以找到普遍適用的模板形式實現(xiàn)直接的匹配計算。綜合以上二方面的問題,在引入統(tǒng)計模式識別思想的基礎上,提出了基于二值圖形變動分析的模糊模板匹配方案。2.1 基于二值圖形變動分析的模糊模板匹配在含有汽車牌照的圖像中,將漢字定位并提取出來以后,還要完成規(guī)格化、二值化等操作。即使是相同的漢字,由于車牌傾斜、模糊,特別是由于每次定位不可能完全精確一致等諸多因素的影響,導致在二值圖中字體的形狀、大小都會不同,字體位置也會發(fā)生不同程度的偏移。將這種二值圖形的不規(guī)則現(xiàn)象稱為圖形的變動。在漢字識別的分析過程中,希望對圖形變動的大小進行量化處理。因此,提出了求圖形整體變動量的統(tǒng)計方法,其優(yōu)點是不需要參照標準圖形,可以進行客觀評價,并構造出用于匹配識別的模糊模板。對每一個車牌的漢字字符,選取n幅質(zhì)量較好的參考圖。將這n幅參考圖規(guī)格化為17×33的標準大小后進行二值化處理,得到標準參考圖fi(x,y)。因此每個車牌漢字字符都有n幅由0、1所組成的二值圖像。將這n幅二值圖像對齊后疊加,再進行歸一化。得到的模糊圖形F(x,y)。四個漢字的模糊圖形模板(不同方向的視覺效果)如圖1所示。
4 實驗流程及結果對識別300幅切分后的質(zhì)量較好的漢字灰度圖進行識別,實驗流程如圖3所示。實驗結果表明,外圍面積特征匹配法正確率達88%,網(wǎng)格特征匹配法86%,簡單模板匹配法91%,改進算法的正確率達到了93%。如果對識別結果進一步校正,正確率將提高到95%。若再進一步增加訓練集,完善模板,相信正確率還可以繼續(xù)提高。