展會信息港展會大全

一種基于模糊模板匹配的車牌漢字識別方法
來源:互聯(lián)網(wǎng)   發(fā)布日期:2011-10-01 20:02:41   瀏覽:23327次  

導讀:針對車牌漢字識別提出了一種基于二值圖形變動分析的模糊模板匹配的車牌漢字識別方案。介紹了該方法的具體實現(xiàn)算法和實驗流程及結果。...

一種基于模糊模板匹配的車牌漢字識別方法

2011-07-07 18:32:27 來源:

關鍵字:

 字符識別屬于模式識別的范疇,通常的字符識別方法可分為2類:基于字符結構(筆畫特征)的結構識別和基于字符統(tǒng)計特征的統(tǒng)計識別。結構模式識別方法的優(yōu)點是可以識別復雜的模式,缺點是需要進行筆畫特征的提取,在輸入圖像質(zhì)量不佳的情況下,這一點往往難以做到。在統(tǒng)計模式識別方法中,特征提取方便,識別速度與識別對象無關,但需要得到字符集的穩(wěn)定特征,且在字符筆畫較多時要求的特征量非常大。二種識別方法各有優(yōu)缺點。人類的視覺感知系統(tǒng)是一個魯棒性很強的、能抵御實際中可能遇到的各種變形和噪聲干擾的文字識別系統(tǒng)。人們的認字過程實際上是對漢字整體形象的把握,是對漢字圖像全局的處理過程[1]。因而,漢字的整體信息在無筆順識別中起著無法替代的重要作用。統(tǒng)計模式識別借助概率論的知識,判斷或決策對象的特征類別,使得決策的錯誤率達到最小;诮y(tǒng)計特征的識別方法先抽取識別對象的穩(wěn)定特征,組成特征矢量,然后在字符集的特征空間中進行特征匹配;谝陨险J識,在分析汽車牌照中漢字字符的特點后,采用了有別于結構分析的一種基于字符圖像特征統(tǒng)計的模式識別方法進行漢字識別。同時針對統(tǒng)計方法無法區(qū)分的相似漢字,提取其微結構信息進行特殊的校正識別。1 特征統(tǒng)計匹配統(tǒng)計決策論其要點是提取待識別模式的一組統(tǒng)計特征,然后按照一定準則所確定的決策函數(shù)進行分類判決[2]。漢字的統(tǒng)計模式識別是將字符點陣看作一個整體,從該整體上經(jīng)過大量統(tǒng)計得到所用特征,用盡可能少的特征模式來描述盡可能多的信息。所采用的方法有:特征統(tǒng)計的方法、整體變換分析法[3]、幾何矩特征、筆劃密度特征、字符投影特征、外圍特征、微結構特征和特征點特征等。這些方法都具有各自的優(yōu)缺點,應根據(jù)具體應用進行選取。主要方法有外圍面積特征匹配法和網(wǎng)格特征匹配法。外圍面積特征反映了字符的輪廓信息。外圍面積特征提取法,主要是從周圍形狀的心理學知識來獲得漢字信息的特征,即對文字周圍上下左右的形狀進行量化,從而構造特征向量。網(wǎng)格特征實際是結構模式識別和統(tǒng)計模式識別相結合的產(chǎn)物。字符圖像被均勻或非均勻地劃分為若干區(qū)域,稱之為“網(wǎng)格”。在每個網(wǎng)格內(nèi)尋找各種特征,如目標面積比例、交叉點、筆劃端點的個數(shù)、細化后的筆劃長度和筆劃密度等。特征統(tǒng)計以網(wǎng)格為單位,即使個別點統(tǒng)計有誤差也不會造成大的影響,從而增強了特征的抗干擾性。因此這種方法得到日益廣泛的應用。在實際的車牌漢字識別中,當相同漢字的二值圖形變動較小時該方法較有效。具體應用:將尺寸為34×66象素的漢字二值圖均勻分成32個正方形的小區(qū)域(不考慮外邊框的1個象素),統(tǒng)計每個8×8的小區(qū)域內(nèi)目標象素(白色)所占的面積比例,就得到了歸一化的32維特征矢量。統(tǒng)計多幅相同漢字的32維特征矢量,取均值作為該漢字的標準網(wǎng)格特征模板。識別時,計算待識別漢字的32維網(wǎng)格特征矢量與模板矢量之間的Euclid距離,求得最小距離值,其對應的漢字即為識別結果。在具體應用中,由于外部原因常常會出現(xiàn)字符模糊、字符傾斜的情況,而網(wǎng)格特征匹配方法對字符模糊和傾斜較敏感,因此魯棒性不是很強,不適合實際應用。2 模板匹配考慮到以上2種主要識別方法存在的弊端,決定選用模板匹配的算法進行字符的識別。實際研究中發(fā)現(xiàn),二值化的圖形模板雖然直觀,但其匹配計算過程過于簡單直接,對傾斜、形變、殘損、模糊的待識別字符匹配誤差較大,因此魯棒性較差。而灰度模板由于色彩、光照等因素影響,難以找到普遍適用的模板形式實現(xiàn)直接的匹配計算。綜合以上二方面的問題,在引入統(tǒng)計模式識別思想的基礎上,提出了基于二值圖形變動分析的模糊模板匹配方案。2.1 基于二值圖形變動分析的模糊模板匹配在含有汽車牌照的圖像中,將漢字定位并提取出來以后,還要完成規(guī)格化、二值化等操作。即使是相同的漢字,由于車牌傾斜、模糊,特別是由于每次定位不可能完全精確一致等諸多因素的影響,導致在二值圖中字體的形狀、大小都會不同,字體位置也會發(fā)生不同程度的偏移。將這種二值圖形的不規(guī)則現(xiàn)象稱為圖形的變動。在漢字識別的分析過程中,希望對圖形變動的大小進行量化處理。因此,提出了求圖形整體變動量的統(tǒng)計方法,其優(yōu)點是不需要參照標準圖形,可以進行客觀評價,并構造出用于匹配識別的模糊模板。對每一個車牌的漢字字符,選取n幅質(zhì)量較好的參考圖。將這n幅參考圖規(guī)格化為17×33的標準大小后進行二值化處理,得到標準參考圖fi(x,y)。因此每個車牌漢字字符都有n幅由0、1所組成的二值圖像。將這n幅二值圖像對齊后疊加,再進行歸一化。得到的模糊圖形F(x,y)。四個漢字的模糊圖形模板(不同方向的視覺效果)如圖1所示。

一種基于模糊模板匹配的車牌漢字識別方法

4 實驗流程及結果對識別300幅切分后的質(zhì)量較好的漢字灰度圖進行識別,實驗流程如圖3所示。實驗結果表明,外圍面積特征匹配法正確率達88%,網(wǎng)格特征匹配法86%,簡單模板匹配法91%,改進算法的正確率達到了93%。如果對識別結果進一步校正,正確率將提高到95%。若再進一步增加訓練集,完善模板,相信正確率還可以繼續(xù)提高。

一種基于模糊模板匹配的車牌漢字識別方法

贊助本站

相關內(nèi)容
AiLab云推薦
展開

熱門欄目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能實驗室 版權所有    關于我們 | 聯(lián)系我們 | 廣告服務 | 公司動態(tài) | 免責聲明 | 隱私條款 | 工作機會 | 展會港